A new method to measure pulsed RF time domain waveforms with a sub-sampling system

T. Reveyrand1 and Z. Popović2

1 XLIM - CNRS, UMR 6172, 123 Av. A. Thomas, 87060 Limoges Cedex, France
tibo@xlim.fr

2 ECEE, University of Colorado at Boulder, 425 UCB, CO 80309, USA
zoya@colorado.edu
Table of contents

1 Bench
 Setup
 Calibration

2 Receivers
 Mixer based (NVNA)
 Sampler based (LSNA)

3 Algorithm
 Frequency Analysis
 Time-Frequency Analysis

4 Results
Designing very high efficiency Power Amplifiers requires transistors level characterizations such as:

- Large-signal measurements;
- RF time-domain measurements;
- Pulsed mode for radar applications;
Large-Signal Measurement Setup

Pulsed RF source

Down-conversion

Filter

ADC

Tuner

IMS2012 Montreal TH2A-2
Calibration Procedure (CW)

- SOLT
- Absolute Power
- Absolute Phase

\[
\begin{pmatrix}
 a_1 \\
 b_1 \\
 a_2 \\
 b_2
\end{pmatrix} = \| K \| . e^{j \phi} \cdot \begin{bmatrix}
 1 & \beta_1 & 0 & 0 \\
 \gamma_1 & \delta_1 & 0 & 0 \\
 0 & 0 & \alpha_2 & \beta_2 \\
 0 & 0 & \gamma_2 & \delta_2
\end{bmatrix} \cdot \begin{pmatrix}
 R_1 \\
 R_2 \\
 R_3 \\
 R_4
\end{pmatrix}
\]
Receivers for CW measurements

- **NVNA approach**: frequency domain

 - Narrow band filter

- **LSNA approach**: subsampling

 - Low-pass filter
Mixer based pulsed measurements (NVNA)

\[P_{pulse} = P_{meas} \cdot \left(\frac{T}{\tau}\right)^2 \]
Sampler based pulsed measurements (LSNA)

\[f_{RF} = 1.5 \text{GHz} \quad \tau_{pulse} = 10\mu s \quad T_{IF} = 8\mu s \]
About inner-products

According to a dictionary

\[D = \{ \psi_k \}_{k \in \Gamma} \]

\(x(t) \) can be represented by its inner-products coefficients

\[
\langle x, \psi_k \rangle = \int_{-\infty}^{+\infty} x(t) \cdot \overline{\psi_k(t)} \cdot dt
\]

If \(x(t) \) is sparse in \(D \) then

\[
x(t) \approx \sum_{k \in \Lambda \subset \Gamma} \langle x, \psi_k \rangle \cdot \psi_k
\]
What is a Fourier Transform?

- \(D = \{ \psi_f(t) = e^{j 2 \pi f t} \} \)
- \(X(f) = \langle x, \psi_f \rangle \)
- \(x(t) = \int_{-\infty}^{+\infty} X(f) e^{j 2 \pi f t} df \)
- \(X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} dt \)
- \(x(t) \approx \sum_k X(k f_0) e^{j 2 \pi k f_0 t} \)

Standard LSNA uses boxcar window
The Short Time Fourier Transform

Rectangular STFT is well suited for harmonic analysis

Projection basis:

- \(D = \{ \psi_{k, \tau} (t) \} \)
- \(\psi_{k, \tau} (t) = P_k \cdot \psi_k (t - \tau) \)
- \(\psi_k (t) = \prod (f_0 \cdot t) e^{i \cdot 2 \cdot \pi \cdot k \cdot f_0 \cdot t} \)
- \(P_k = f_0 \cdot e^{i \cdot 2 \cdot \pi \cdot k \cdot f_0 \cdot \tau} \)
- \(X (k \cdot f_0, \tau) = \overline{P_k} \cdot X (t) \ast \overline{\psi_k} (t) \)

\[
X (k \cdot f_0, \tau) = \overline{P_k} \cdot \mathcal{F}^{-1} \{ X (f) \cdot \overline{\Psi_k} (f) \}
\]
LSNA software modifications

Standard procedure

New procedure

- Raw Data
- FFT
 - Coefficient Extraction (K)
- V/I Calculation
- Phase Normalization
- Results

- Raw Data
 - K times
 - FFT
 - IFFT
 - Threshold
 - Gate Mask
 - Average
 - Transcient
 - Coefficient Extraction (1)
 - V/I Calculation
 - Phase Normalization
 - Results
Experimental view of the algorithm

\[f_{RF} = 1.5 \text{GHz} \quad \tau_{\text{pulse}} = 10 \mu s \quad T_\psi = 8 \mu s \quad k \in \{1, 2, 3, 4\} \]
LSNA pulsed measurements on a PA \((T = 100\mu s) \)

\[
f_{RF} = 1.5\,GHz \quad T_\psi = 8\mu s \quad k \in \{1, 2, 3, 4\}
\]

\[
\tau = 10\mu s
\]

\[
\tau = 50\mu s
\]

\[
\tau = 100\mu s
\]

\[
CW
\]
Conclusion

- Standard LSNA hardware can measure pulsed RF
- Minimal software modification (FFT procedure)
- Compatible with CW and pulsed signals
- Adaptive method
 - No trigger
 - Pulse’s width and period (τ, T) not required
- Both ’Average’ and ’Envelope Transient’ modes availables

Future work:
- Narrow pulses (double aliasing)
- Other types of modulation