Introduction

- The goal of this research is to integrate microwave-frequency Large Signal Network Analysis capabilities with commercially available National Instruments’ PXI modular instrumentation and LabVIEW environment.
- The Microwave Research Group at the University of Colorado has decades of experience in UHF through millimeter-wave transmitters, including recent X-band (10-GHz) MMIC implementations in GaN. Our aim is to extend the frequency range and capabilities of available commercial instrumentation provided by NI.
- The proposed instrumentation development will enable new types of measurements such as those required for harmonically-terminated PAs, various transmitter architectures (Doherty, outphasing and supply modulated PAs), as well as microwave transistor rectifiers. The time-domain characterization is expected to provide dramatic improvement in RF circuit design capabilities.

LSNA calibration algorithm

LSNA calibration algorithm consists of 3 steps at each RF frequency:

1. A relative VNA calibration creates an error-term matrix related to ports 1 and 2:

 $\begin{pmatrix}
 a_1 & b_1 \\
 a_2 & b_2 \\
 \end{pmatrix} = K \begin{pmatrix}
 1 & \beta_1 & 0 & 0 \\
 \gamma_1 & \delta_1 & 0 & 0 \\
 0 & 0 & \alpha_2 & \beta_2 \\
 0 & 0 & \gamma_2 & \delta_2 \\
 \end{pmatrix} \begin{pmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 r_4 \\
 \end{pmatrix}$

2. The power calibration gives $|K|$

3. The phase calibration yields $\arg\{K\}$

Power and phase calibration are performed at an auxiliary reference plane (P_{aux}) after its own 1-port SOL coaxial calibration:

$\begin{pmatrix}
\alpha_{aux} \\
\beta_{aux} \\
\gamma_{aux} \\
\delta_{aux} \\
\end{pmatrix} = K \begin{pmatrix}
1 & \beta_{aux} \\
\gamma_{aux} & \delta_{aux} \\
\end{pmatrix} \begin{pmatrix}
r_1 \\
r_2 \\
\end{pmatrix}$

- **Power** calibration at P_{aux} reference plane requires the connection of a power sensor. According to the measured value, in dBm, we can calculate $|K_{aux}|$ such as:

 $|K_{aux}| = \frac{10^{(Power-10)/20}}{r_1 + \beta_{aux} r_2}$

- **Phase** calibration at P_{aux} is performed by connecting a direct receiver (e.g. r_3) at P_{aux}:

 $\arg\{K_{aux}\} = \arg\left\{\frac{r_3}{r_1 + \beta_{aux} r_2}\right\}$

- **Reciprocity** transfers the absolute calibration from P_{aux} to ports 1 and 2 ($P1$ and $P2$):

 $K = \pm \sqrt{\frac{1}{\text{Det}(M)}}$

 with

 $M = \begin{pmatrix}
 1 & \beta_1 \\
 \gamma_1 & \delta_1 \\
 \end{pmatrix} \begin{pmatrix}
 1 & \beta_{aux} \\
 \gamma_{aux} & \delta_{aux} \\
 \end{pmatrix}^{-1}$

Measurement Setup for Envelope Tracking Application

The setup includes two LSNA simultaneously. One is dedicated to RF (sampler based downconversion), the other one samples directly the LF stimulus. The purpose is to investigate low-frequencies f_2 of the DUT under RF large signal conditions.

LSNA (Large Signal Network Analyzer)

LSNA (Large Signal Network Analyzer)

- **RF Source**
- **RF Driver**
- **RF Coupler**
- **GaN HEMT**
- **RF Coupler**
- **RF Bias Tee**
- **RF LSNA**
- **RF Source**
- **RF Driver**
- **RF Coupler**
- **GaN HEMT**
- **RF Coupler**
- **RF Bias Tee**
- **RF LSNA**
- **RF Source**
- **RF Driver**
- **RF Coupler**
- **GaN HEMT**
- **RF Coupler**
- **RF Bias Tee**
- **RF LSNA**

Conclusion

This new project will enable a new RF measurement capability by enabling an instrument that currently does not exist on the market. Some additional benefits include:

- Frequency range extension of NI RF instrument products currently available;
- Sampler architecture offers a unique multi-scale time analysis possibility (e.g. signal and carrier domains);
- can be implemented with various ADCs and downconverters (e.g. THAs);
- 100% LabVIEW environment;
- goal is to offer open-source LabVIEW software for user measurement flexibility.

Acknowledgements

This work is funded by National Instruments (Dr. Truchard) through a charitable donation. We would like to acknowledge DARPA (Dr. Greene) and ONR (Dr. Maki) for funding the initial part of this work under grant N00014-11-1-0931.

Table: Time-domain instrumentation for non-linear devices

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Receivers</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTA (requires two synchronized)</td>
<td>HP</td>
<td>Sampler</td>
<td>Discontinued</td>
</tr>
<tr>
<td>LSNA</td>
<td>Agilent</td>
<td>Sampler</td>
<td>Discontinued</td>
</tr>
<tr>
<td>PNA-X + Nonlinear option</td>
<td>Agilent</td>
<td>Mixer</td>
<td>$$$</td>
</tr>
<tr>
<td>ZVA + Nonlinear option</td>
<td>Rohde and Schwarz</td>
<td>Mixer</td>
<td>$$$</td>
</tr>
<tr>
<td>SWAP X- 402</td>
<td>VTD</td>
<td>Sampler</td>
<td>Discontinued</td>
</tr>
</tbody>
</table>